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Abstract 

In the first part of this article [2], the concepts cosidered  were those of propositional definitions  - 

the most common cases of the logical structure of definitions, which kids encounter as early as at 

preschool age. In high school students meet concepts with quantifiers in definition.  

This paper illustrates the methods of teaching and learning such concepts in terms of using 

counterexamples and software considering the notion of limit of a function. In general, the types of 

student’s activities in studies of limit do not depend on the specifics of functions (whether they are 

real or complex, uni- or multivariate, etc.), whereas, the supporting models are dramatically 

different. 

1. Univariate case 

1.1. Intuitive understanding 

A popular intuitive definition of limit of a function looks as follows:  

D1  The limit of f(x), as x approaches a, equals L if we can make the values of f(x) arbitrarily close 

to (as close to L as we like) by taking x to be sufficiently close to a (on either side of  a) but not 

equal to a.  

Answering the question: “When the limit of f(x), as x approaches a, does not equal to L?” students 

construct negation of D1 by naturally changing “can” to “cannot” there.  

In terms of teaching, this dichotomy is not very fruitful. The typology of counterexamples 

becomes clear taking into account the prospect of the subsequent study of another 

fundamental mathematical concept - continuity, based on the notion of a limit. The 

discontinuity, as negation to continuity, provides us with a rich and concrete selection of types 

of counterexamples.   

In general, the need for propaedeutic of subsequent contents - one of the teaching rules - often 

delivers fresh pedagogical ideas, including those relating to examples and counterexamples 

of currently studied concepts. 

                                                           
1 It is the second part in the series of papers “Counterexamples in Mathematics Education: 

Why, Where, and How? – Software aspect”.   
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The model M1 uses graph of function f(x), and based on understanding of “closeness” to value a as 

belongings to some small interval with center at a. Fig.1 shows the model2, where f1(x) is a light blue 

line y = 0.2(x3-2x2)/(x-2). 

Model includes two variables a and delta, which allow to express the condition of closeness of x to a 

in form |x – a| < by means of function f2(x) defined as “y = f1(x),       if |x - a| delta”3 - the dark 

green subcurve. 

 
Figure 1 

Fortunately, we can use the VisuMatica’s possibility to display domain and range of function 

(intervals on the coordinate axes). The optional accompany curvilinear trapezoids illustrate their 

“source”. Model also includes two dotted lines x = a,  y = f1(a), and a magenta line y = b - a spare one 

(until the right time it can be made invisible).  

Exploration tasks (Types)  

1. Change the value of parameter delta (use the scroll bar). Make it as small as possible. What happens 

with graph of function f2(x)? …with its domain and range? How do you read it from the chart? What 

is the value of limit at a = 3? 

2. Repeat step 1 in case of a = 2, -1,... 

3. Is the range symmetric with respect to the limit? 

4. Is the biggest distance of points in range from the limit always less or equal to delta?  

To check it - select and redefine f1(x) with a  suitable expression.   

5. Consider the following cases:  

a) Select function f1(x) and redefine it to y=x+1/(x-1). 

 Set a = 0.5. What limit has f1(x)  when x approaches 0.5, if any (Fig.2 a,b)?  

 Set a = 1. What limit has f1(x)  when x approaches 1, if any (Fig.2 c,d)?  

What is the principal difference between these cases of a = 0.5 and a = 1?  

How one can recognize this difference just by the only graph of initial function f1(x)? 

Offer five more values of  a, where f1(x) has a limit. Find these limits without VisuMatica. Can you 

guess other value of a, where the limit does not exist? 

b) Select function f1(x)  and redefine it to y=x/2+[x]. 

                                                           
2 Starting from here all the models constructed by the author’s software VisuMatica. 
3 The inequality should be strict, but we use a legal unstrict version to eliminate the hollow circled at the ends 

of graph. 
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 Set a = 1.5. What limit has f1(x)  when x approaches 1.5, if any (Fig.3 a, b)?  

 Set a = 2.0. What limit has f1(x)  when x approaches 2.0, if any (Fig.3 b)?  

Change the model to support exploration of one side limits (redefine f2(x) properly).     

c) Select function f1(x)  and redefine it to y=(x4-x2)/(x2-1), a = 1.  
      What now is similar and what is different from the previous cases?  

      Why the horizontal dotted line disappeared?  

      Explain the meaning of the punctured circle and the two white gaps in Fig.4, a). 

“Play” with parameter delta. Has function f1(x) a limit at 1.0?  

a     b               c         d  

     Figure 2. a) b)c) d) 

If your answer is “Yes” then 

What is the limit’s value? Is the limit equal to  f1(a)?  

Change the value of parameter a to locate the magenta line y = b in the expected position of 

the disappeared horizontal line y = f1(a) (Fig.4 b).  

else  

Read the definition D1 once more. Pay attention to its ending condition. Have you changed 

your mind? What is the limit’s value?  

d) Select function f1(x) and redefine it to y = 2 if x = 1 else (x4 - x2)/(x2 - 1), a = 1.  
What now is similar and what is different from the previous task (c)?  

Why does the horizontal dotted line appear again??  

“Play” with parameter delta. Has function f1(x) a limit at 1.0?  

                          What is the limit’s value? Is the limit equal to f1(a)?  

a     b      c     d  

Figure 3. a) b)c) d)
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a    b    c      d   

Figure 4 

1.2 Definition by Cauchy 

The understanding of “closeness” of x to a, expressed by inequality |x – a | < with small enough was 

sufficient in modeling of intuitive definition of the concept of limit. But, actually, we were looking 

for two “closenesses”, related to the function f(x): closeness of argument x to a, and closeness of the 

correspondent f(x) to the value of limit L.  

This argumentation in class finalizes by introduction of the “” definition: 

 D2  The number L is called the limit of function f (x) as xa if and only if, for every>0 there exists 

such > 0 that | f(x) – L| < whenever 0 < |x – a| < and x Dom(f) 

Such logically complicated constructions students meet for the first time. Clarification of definition 

by means of the following formal logical notation, which includes both universal and existence 

quantifiers and implication, stresses students even more. 

 D3  The number L is called the limit of function f (x) as xa if and only if 

 ( 0)( 0)( ( ))(0 | | | ( ) | )x Dom f x a f x L                

In case of counterexample, this statement fails.  

It can be useful to explain the general role of negation of expressions with quantifiers:   

a) Change the quantifiers ( to  and  to ). 

b) Negate the predicate expressions. 

Thus, )|)(|||0)()(0)(0()(lim  


LxfaxDomxLxf
ax

 

In human: 

The number L is not the limit of function f (x) as xa if exists such> 0 that for each > 0, | f(x) – 

L|  whenever 0 < |x – a| <  

Analysis of “” definition D3 with students brings up the following “algorithm” of limit 

recognition:    

1. Select a and an expected limit L. Choose some > 0. 

2. Find such  > 0, that for all 0 < |x−a| <   the condition |f(x) − L| <   remains correct. 

3. If a proper   in step 3 was found 

        choose some smaller value of , say, its half and go to step 24, 

             else  

                      L is not the limit of function f (x) as x a. 

Fig.5 shows model M2 for studies of “” definition. It includes: 

                                                           
4 Pay students’ attention to the infinite amount of such returns if l is really the limit. 
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1. Variables a, epsilon, delta, and L (at the beginning defined as L = f1(a)). 

2. Graph of function y=x3/50 in the role of f(x) - light blue curve f1. 

3. Epsilon neighborhood related objects: f2, defined as y = f1(x), if |f1(x) − L| < - dark magenta subcurve 

with its domain-light blue and range-light green, and light yellow bar |f(x) − L| <  . 
4. Delta neighborhood related objects – as in model M1 (Fig.1). Here f3 is defined as y = f1(x), if |x 

- a| delta. 

Student interact with model by changing values of its four parameters.  As a starting point, model 

presents the case of L, defined by expression f1(a) (Fig.5). So, we have only three independent 

parameters a, epsilon, and delta5. Such “limitation” of L = f1(a) is very helpful at the beginning of 

student’s activities: it eases explorations, and it provides an important propaedeutics of the concept 

of continuity. 

 

Figure 5 

The work with this model on examples and counterexamples of the limit is based on the formulated 

algorithm and actively refers to model’s elements as analogs of elements of the definition. In result 

of routine of these activities it becomes clear that we can facilitate our model. It will be sufficient to 

leave it only with the yellow -bar, graphs of the initial function f1 and the current f3, defined on the 

-interval. We do not need any region (domains, ranges and curvilinear trapezoids). Our new model 

M3 (Fig.6) becomes easier to manipulate and explore without loose of its educational potential6. Of 

course, this conclusion and transition to the “light” model M3 is justly only after detailed exploration 

with students of the  definition of limit by means of model M2. 

 

                                                           
5In these terms, L is not a limit if has been found such value of , that for any arbitrarily small  we see 

magenta outside the yellow bar.  

6 In these terms, L is not a limit if has been found such value of  , that for any arbitrarily small   we see 

parts of dark green subcurve outside the yellow bar.  
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Figure 6 

After solving examples and counterexamples of mentioned types with these models, let us construct 

a provocative counterexample.  

We start with a very simple function y = (x - 2)2 - 1 and step-by step transform it up to 

2| ( 2) 1| 1y x     (Fig.7)7.  

 
Figure 7  

The received graph includes a red isolated point (2, 0). Is 01|1)2(|lim 2

2



xy

x
? 

Really, for each andany 0<  2  we have no x in domain of f(x). The              -

neighborhoodis empty-there is nothing to check on satisfaction of inequality |f(x)−L|< 

To take into account similar situations it is common to include requirements to the domain in 

definition of the concept of limit of a function. The simplest way, is to require belonging of the whole 

punctured opened interval to the function’s domain Dom(f). However, arbitrarily closeness has a 

better presentation by means of the notion of accumulation point: 

 D4   Point a is called an accumulation point of a set S if for every > 0 there exists a point  x S 

such that 0 < |x – a| < .  

If a is an accumulation point of the domain, then there are infinitely many other neighboring points 

in domain. Now it is time to update the D2 definition as follows: 

 D5      Let a be an accumulation point of the domain of the function f. Then the number L is called 

the limit of function f (x) as xa if and only if, for every > 0 there exists > 0 so that, 

whenever x Dom(f) and 0 < |x – a| < , then| f(x) – L| <  

This definition clarifies the judgement about the previous limit as a counterexample, and the 

following pathological function’s behavior as a correct example of a limit.  

Consider   
x

x
x

1
sinlim

0
. Fig.8 shows graph of function 

x
xxf

1
sin)(   with different levels of 

zooming. Function’s domain does not include 0. However, the graph condenses as we are 

approaching 08. It looks like from some zooming moment the whole “area” around the origin belongs 

to graph.  

To catch up craftiness of graph pay students’ attention to the radicand. When we graph it separately 

it becomes clear that radicand has negative values arbitrarily close to zero. Arguments of these values 

are not in the domain. So, there is no neighborhood of 0, which fully belongs to Dom(f)! Meanwhile, 

that radicand has positive values arbitrarily close to zero. Arguments of these values are in the domain 

of f(x). Each neighborhood of 0 includes points that belong to Dom(f). Thus, zero is an accumulation 

                                                           
7 This and the following examples illustrate the modeling strength of VisuMatica – an important feature of 

educational software. 
8 VisuMatica marks it by a punctured origin. Why? – The students’ answer follows soon. 
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point of the Dom(f) and consideration of the limit of f (x) becomes legitimate. Graph of radicand also 

helps to grasp the value of limit, especially after addition of radicand envelopes y = x and referring 

to the “sandwich” theorem. 

      
Figure 8 

Summarizing together with students their observations of different cases we come to the following 

scheme (Fig.9). Cases a) - d) present examples of limit, while cases e) - g) present counterexamples.  

 What unites and what differs these cases? If limit is “closeness” then closeness of what is common, 

and closeness of what distinguishes a)-d) and e)-g)? 

   The consideration has no relation to the value of L and interval around it !  

We’ve “discovered” the Cauchy Criterion: 

 CC    The finite limit )(lim xf
ax

 exists if and only if 

0 < |x1 - a| < 0 < |x2 - a| <  |f(x1) - f(x2)| <  

 
                        a         b             c            d                           e            f              g       

Figure 9 

1.3 Definition by Heine 

The sequential mechanism in studies of limit finds its definition (by Heine) as follows:  

D6   We call L the limit of function f(x) as x a if for any sequence {xn} converging to a with terms

axn   for all n N, the sequence {f(xn)} converges to L as n    

So, the software has to provide an ability to generate various sequences {xn} converging to a, and to 

verify the convergence to L of the corresponding sequences {f(xn)}. 
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The concept of converging sequences seems not so convenient for visualization. Nevertheless, 

VisuMatica models them quite successfully.  

M4. Fig.10 shows the model in case of f1(x), defined as y = sin(x), and f2(x), defined as s(n) = 

RandomlyTo(f1(x),a,0.05), a = /2. 

a  b  c  d  

e)  

Figure 10  

The second expression needs explanation. Its left side s(n) means that it is a definition of a sequence. 

The right side includes call to a function “RandomlyTo”, which initiates generation and drawing of a 

random sequence of colored points Pn( xn , f(xn) ). Function “RandomlyTo” has a three following 

arguments: 

1. Expression of function f(x). In this model it is the initial function f1(x), i.e sin x. 

2. Expression that defines a, to which {xn} converges. 

3. Convergency “speed” - an optional argument. When avoided its value considered as 0.05. 

Fig.10 shows sequence for speed = 0.05 (a) and (b), lazy convergence for speed = 0.3 (c), and  

greedy one for speed = 0.01 (d).  

Thus, the abscissas of generated random sequence of points, located on graph of f(x), converge to the 

calculated value of the second argument.   

Color distribution codes the order of points in the sequence. The palette in Fig.10 e) presents this 

arrangement. Reading colors of the spectrum from left to right we interpret the order of sequence 

elements as follows: purple and dark blue points present the first elements, the yellow and especially 

red ones – elements with the most advanced indices.  

Each following point of the sequence covers the colors of the previous points located below it. 

Repeatedly pressing button F5 refreshes scene and this way generates one more random 

sequence with the same parameters (compare images a) and b) in Fig.10).   

As always, an important question is: What does it mean Lxf
ax




)(lim ? 

First, we rewrite the definition D6 in a formal logical notation: 

 D7   The number L is called the limit of function f (x) as x a if and only if 

{xn |
axn  , n N})( {xn}a  {f(xn)} L  

Using the role of negation of expressions with quantifiers we get its negation: 

              


Lxf
ax

)(lim {xn |
axn  , n N}( {xn}a  {f(xn)}L  

Students can gain experience in studies using some fresh tasks of previous types. 

The following two questions sum up these activities.   

 What feature of the repeatedly redrawed scene can be interpreted as existance of the limt and 

how to read the limit’s value?  
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 How to ease this decision and to make the show clearer? 

One more type of students activities consists in recognition and explanation of images, created by 

means of current model:  

Exploration tasks (Types) 

 Observe and explain images in Fig.11 obtained with model M4: 

a) 


 


x

x
y

sin2

2/,3 
,  

2


a ,           b)  y = [x], a = 2,         c)  y = [x], a = 2.04,  

       d), e) 
2100

1

x
y  , f), g)  xy /1sin , a = 0 with different scales.   

a  b  c  d   e   f     g  

Figure 11  

 Compare the two images d) and e) (f) and g)). What did the experimenter, to make the second 

image more “explanatory”? What is the value of )(lim
0

xf
x

if any? 

Cases f) and g) present a “strange” behavior of the random sequence in our model. Scaling and 

repeated redrawing of random distribution (reconstruction of the sequence) does not change the 

principle - the y-coordinate of red dots remain arranged randomly in the segment [-1, 1]. 

Note that the definition by Heine has a constructive nature. In fact, the value of L does not matter: by 

finding that for all sequences {xn} converging to a - the sequences {f(xn)} converge to the same value 

P, we simply conclude that P is the limit of f(x).  

This fact converts the definition by Heine to Sequential Criterion for Functional Limits: 

HC   Given a function f(x) and an accumulation point a of Dom(f), the following two statements are 

equivalent: 

a) Lxf
ax




)(lim , 

b) for any sequence {xn} converging to a with terms
axn   for all n N, the sequence {f(xn)} 

converges to L as n    

The following Divergence Criterion for functional limits is just its corollary: 
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DC     )(lim xf
ax

does not exist if and only if one of the following occur: 

a) there exist two converging to a sequences 
}{ nx

 and 
}{ nx 

 in Dom(f) that 
axn   and 

axn   

for all n N but  
)(lim)(lim n

n
n

n
xfxf 

 . 

b) there exists a converging to a sequence
}{ nx

in Dom(f) that 
axn   for all n N for which 

lim ( )n
n

f x


does not exist. 

Our suspicions about the behavior of function y = sin 1/x, when x approaches to a = 0 can not be 

easily veryfied by the a) version of Divergence Criterion with model M4. Its mechanizm for creation 

of a single random sequience does not fit simultaneous construction of several different sequences.  

Fortunately, VisuMatica allows to highlight extremums. They are looking expressive in the context 

of our exploration (Fig.12 a),b)). Colored points accent the extremums: points of maximum are shown 

in blue, while points of minimum – in orange.  

a b c  d  

Figure 12 

Images a) and b) in Fig.12 present the exploration by changing the x-axis window’s boundaries. It 

becomes clear that the two sets of extremum points include sequences with two different limits -1 and 

1 at a = 0: the blue points converge to (0, 1), and the orange ones are approaching to (0, -1). On the 

basis of DC(a) function diverges at 0.  

 Find expression that define sequence marked in blue (orange).   

Pay students attention to the presence of other sequences {(xn, f(xn))} with {f(xn)} converging 

to every possible limit in interval [-1, 1]. For example, any line y = b, b crosses the 

graph of the function at an infinite number of points that can be represented as an infinite 

constant sequence {f(xn) = b}, converging to b. 

The following model will help students to handle similar tasks, related to the issue of Convergence-

Divergence Criterion: 

M5. Fig.12 c), d) shows the outputs of model that “solves” the last task and consisits of: 

- function f1(x), defined as y = sin(1/x),  

- sequence s1(n), defined as x(n) = 1/(2n- /2 + b) (invisible), with b  [0, 2], 

- sequence s2(n), defined as y(n) = f1(s1(n)). The sequence is multicolored in the same manner 

as in M4 (see Fig.10). 

 Explore the model - play with the b parameter and zoom in if necessary. 

 Redefine s1 to  approach to the accumulation point from the other side. 

In general, function f(x) diverging at some acccumulation point a can allow converging sequences 

f(xn) with finite )(lim n
n

xf


, while axn
n




lim , so called partial limits.  
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Playing with the b parameter students discover the fact that the partial limits (Fig.12 c, d) are 

filling in the whole interval [-1,1]. 

1.3 Limit Machine 

All the considered models intended to materialize students’ activities on studies of the concept of 

limit. Therefore, although they already modeled "almost finished" definitions, nevertheless, the 

significant component was the accentuation of students' attention to the need for additional actions 

that replenish the definition (the selection of a suitable value of  or the numerous generation of 

random sequences). At some point, the selection of  begins to annoy.  

We suggest students to redesign the model M3 so that it will select an appropriate, the maximum 

possible value of variable  “on its own". As a hint, we advise them to take advantage of the initial 

model, M2 (Fig.5). 

Ultimately, the learning activity here was to find within the green interval I of Dom(f2)
 9 such 

symmetric with respect to a dark green subinterval (a - , a + ), that the graph of function f3, defined 

on it, will entirely belong to the yellow .-neighborhood of L.  

In VisuMatica, function Dom (index, x0, side) provides access to the information about interval I. 

Here index is an index in the name of function’s legend (in our case, the name is f2, so index = 2), x0 

is the coordinate of the point belonging to the interval (in our case x0 = a), and side is the letter: "l" 

for the left border of the interval and "r" for the right.  

After a brief discussion, students offer the simplest version of a workable model with an automatic 

finding of the "ideal" value of by the given values of a and .  

This model (Fig.13) includes the following elements: 

- Function f1(x) defined as y = (x4-2x3)/(20x-40)+2 graphed by light-blue curve.  
- Variables a, epsilon, and l (at the beginning defined as l = f1(a)). 

- Point P(a,l) with projecting perpendiculars onto coordinate axes. 

- Epsilon neighborhood related objects: f2, defined as y=f1(x), if |f1(x) – P.y| < epsilon- set as invisible and 

light yellow bar |f(x) − L| < . 

- Delta neighborhood related objects – Variables DomL=Dom(2,a,l), DomR=Dom(2,a,r), delta=min(a-

DomL,DomR-a), and f3 defined as y = f1(x), if |x-a|delta, colored in brown-red. 

By varying the values of a and  students are convinced in correctness of the current model, except 

the case of a = 2. 

Fortunately, VisuMatica provides function Lim (expression, variable, x0), which calculates the value 

of
0

lim
variable x

expression


.  

Redefinition of L as Lim(f1(x),x,a) fixes the model. It looks like M3 (Fig.6), but finds the value of  

automatically, and properly changes the graph of function f3. 

 

                                                           
9 a I. 
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Discussion of this model leads to the need for an additional visual emphasis on the following three 

features: 

1. The symmetry of the domain of function f3 with respect to a.  

2.  The fact that the graph of function f3 (brown-red curve) is entirely located in the -

neighborhood (yellow strip) with possible exception of the point (a, f3(a)). 

3. The width 2of the domain of function f3 is the maximum possible. 

 
Figure 13 

The simplest improvement is the addition of two points P1(a-f1(a-)) and P2(a+f1(a+)) with 

their projections onto coordinate axes at the ends of the curve f3, especially since the feature of 

projection is already enabled in the “OPTIONS” of the “Geometry” dialog (Fig.14, three left images). 

Vertical lines on both sides are equidistant from the middle vertical (feature 1). The maximum 

possible distance between them (feature 3) is also confirmed by careful analysis of the picture. 

Although the horizontal lines of the points P1 and P2 are sometimes located on one side of the red line 

determined by the point P(a,L) nevertheless, all these three lines are always inside the light yellow 

bar, confirming the fulfillment of feature 2.  

Unfortunately, this variant is not perfect: the show fails when one of the abscissas of these points (a-

a+) does not belong to the domain of function f1. In such case, calculation of the function f1 

fails, resulting disappearance of the point and its projecting lines. Thus, the left point P1(2, error) 

becomes invisible in the third image in Fig.14, where y = (x2-1)/(x-1). 

      
a = 2.8, a=2.0, a=2, a=2.0, 

Figure 14 

The Domain-Range version of the function f3 (the right-hand picture of Fig.14) always provides a 

correct image, but the reddish range part in this case looks redundant. It will be better to emphasize 

the belonging of all points of the graph of the function f3 to the yellow bar by outlining it with a 

rectangle. Finally, attention should be paid to the cases when the function is defined and has a limit 

at x = a, but 1 1lim ( ) ( )
x a

f x f a


 . This is easy to do by replacing the vertical segment-perpendicular 



The Electronic Journal of Mathematics and Technology, Volume 13, Number 1, ISSN 1933-2823 

95 

 

to the straight line x = a, consisting of points that are excluded from consideration. The final view of 

the new model M6 shown in Fig.15. 

Fig.16 shows examples of images obtained with its help. Analysis of these and similar images 

together with the corresponding values of variables is pedagogically essential. 

 
Figure 15 

             
                        a = 2.6, a=2.0,  a=2.0, a=1.7,   

a)                          b)                         c)                             d) 

     
     a=2, a=2.3, a=1.7, a=1.2, a=0.9, a=0.9, 

 e)                       f)                            g)                  h)                   i)                 j)    

                  Figure 16. 
4 32
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  j) 

This model will be useful in introducing the concept of continuity of a function. 

2. Multivariable case 

We need three dimensions to show a surface - graph of a real function of two real variables. To 

observe the 3D-scene user must rotate it in different ways without guarantee of an adequate 
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perception of the form of complicated surfaces with singularities. At the same time, the study of the 

function’s limit largely based on examination of counterexamples, which are exactly these, "bad" 

cases. Let us look for ways to overcome this problem.  

2.1 An intuitive definition 

D8   The limit of function z = f (x, y) = f (P) as PP0, equals L if we can make the values of f(P) 

arbitrarily close to (as close to L as we like) by taking P to be sufficiently close but not equal 

to P0.  

The default interface of VisuMatica includes all the necessary features to support the working off this 

definition. After all, we need two things: 

- The ability to differently approach the point P(x, y) arbitrarily close to the fixed P0. 

- The ability to monitor herewith the values of f(x, y) and the way of their changes. 

Just enter the function’s expression, say z = x/y, and move the mouse inside the viewing volume. 

VisuMatica interprets 3D position of the mouse as a point P on the plane xOy and erects a 

perpendicular to this plane at P up to the graph of f(x, y). The end point is marked by a small ball and 

a number – the value of f (P). Coordinates of the moving point P displayed continuously in the status 

line on the bottom of VisuMatica.  

Anyway, this construction serves only the starting, too chaotic phase of exploration. 

In order to ease monitoring it is necessary: a) to present P0 and L, and b) to concretize and make 

“sensible” both the closeness of the point P to P0, and the value of f (P) to L.  

Model M7 includes: variable L, point P0(a, b) controlled by parameters a and b, expressions “|f1(x, 

y)-L|” and “|mouse, P0|” as based on the mouse position. 

 Exploration tasks (Types). Use model to: 

- Check 
(...,...)

lim ... ...
P

  

- Find  
(...,...)

lim ...
P

 or “prove” that the limit does not exist.  

Some inconvenience in moving the mouse manually becomes apparent. Very often, it "runs away" 

too far from P0. To fix the problem we add a disc centered at P0 with radius, controlled by parameter 

c. So, one can move the mouse pointer exclusively not far than c from P0 simultaneously watching 

the essential values of expressions (Fig.17).  

Occasionally, the point P0, we are approaching to, and/or the disc can be fully or partially hidden by 

the surface. Never mind, make the surface invisible – all the elements of our construction, involved 

in the study, will stay visible and active.     

Remains one more problem: we can not guarantee that in some points P, which we did not pass over 

while moving the mouse manually, the situation is similar.  
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Figure 17 

 How to cover all points of the disk, except maybe its center? 

The answer comes, while looking with students for possible definitions of the concept of an open 

punctured disk with center (a, b) and radius r. The classical one we are already using: { (x, y)  R2: 

0 < (x-a)2+(y-b)2  r2 }. Let us improve the model - add  2 ,f x y :      
2 2 2

1 ,,z f x y if x a y b r      

and remove the "old" disk from the xOy plane - it only clutters the picture. Unfortunately,  the 

simultaneous display of f1(x, y) and f2(x, y) looks problematic because of z-competition: their values 

coincide in Dom(f2). In addition, for inspection of surfaces in non-trivial cases, supplementary 

rotations of space, zooming, etc. are needed, and even these actions are not always sufficient. 

Another definition of the disc can be as follows: {(x, y)  R2: (x-a)2+(y-b)2r2,r ]0, c[} 

To cover such region we can use a shrinking circle : (x-a)2+(y-b)2  r2 with 0 < r < c and display the 

image of this circle, that lies on the surface. Observation of the changing form of this image with 

reducing radius of the circle, is going to be very helpful. 

 To what shape should approach the image of the circle when radius approaches 0?  

Model M8 consists of graph of function f1(x) (initially /z x y ) and a parametric curve

1cos , sin , ( cos , sin )x r t a y r t b z f r t a r t b       , t]-image of a circle. 

Fig.18 presents the model in case of a = -5, b = 3 and r = 1 (left), and r = 0.3 (right). 

The curve shrinks to a point, whose applicate z presents the limit ),(lim 1
)3,5(),(

yxf
yx 

.  

 How the applicates of the points of the image of the circle behave in the case of existence of the 

limit of the function?  

Pay students attention to the full control on parameters of the circle-preimage, to possibility 

to enforce it to pass through any point by proper selection of the value of radius.   
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Figure 18 

Let us look for a limit of the same function at P0(0, 0). Set values of both parameters a and b to 0. 

The result changes drastically. Fig.19 presents the model in case of r = 2 (Fig.19 a), and r = 0.5 

(Fig.19 b). Image of the circle – the multicolored curve – does not shrink to any point while decreasing 

the value of radius. It seems that points of the curve are spreading along the surface with all possible 

values of z. This assumption looks reasonable: the initial function includes division by y, whereas 

ordinate of P0 equals to 0. The surface has a singularity along y = 0. Points (x,0) Dom(f) and it can 

seriously affect the surface shape and the limit lengthwise line  y = 0. 

In order to check the guess zoom out the scene (Fig.19 c). The scales’ ranges of all axes of the viewing 

cube are intervals [-80, 80] here. The curve does not spread vertically!  

Guilty:…VisuMatica. Its defauls resolution of parametric drawing is too low. Change the value in the  

“Properties” dialog, say, to 500, and the show fixes to the assumed one. 

The task of looking for a limit at P0(40, 0) becomes even more complicated. Fig.19 d) displays the 

model, when r = 2 and the resolution of parametric drawing is 50. The curve disappears when r 

decreases. We have to zoom out to see some parts of curve.  

 
                 a                                  b                                  c                                    d 

Figure 19 

The shape of the curve provides a basis of a useful discussion with class. 

One can become curious about this curve. Make graph of f1(x,y) invisible (Fig.20 a) and rotate the 

scene around z-axis by pressing left/right buttons. If it still unclear - add a cylinder with radius r, 

whose rotation axis is parallel to axis z, basis centered at point (a, b, zMin), with zMin < z < zMax 

(Fig.20 b). Repeat rotations.  
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 a                                            b 

Figure 20 

  Exploration tasks  

 Use current model in the previous exploration tasks. Compare your results with the ones you 

received with model M7.   

 Look for the limits
y

xy

yx )0,0(),(
lim


,
y

xy

yx )0,5(),(
lim


, 
y

xy

yx

2

)0,0(),(
lim


,
y

xy

yx

2

)0,5(),(
lim


. What is “special” in 

graphs of these functions? Does it affect existence of the limits? 

The curve-image of a shrinking to P0(a, b) circle in model M8 was rather useful in some cases but 

not always. Consideration of this curve as spanned on the cylinder, hints idea of a new model. Let us 

cut this cylinder along its generatrix and deploy it to a plane. 

Model M9 consists of graph of function f1(x, y) (initially
3xy

x
z


 ) set to be invisible, and scan of 

a curve on the surface which projection onto xOy plane is a circle centered at (a, b) with radius r. The 

scan is defined in VisuMatica as a function 1( cos , sin )y f r t a r t b   .  

Consider
3)0,0(),(

lim
xy

x

yx 
. Fig.21 presents the involute in case of a = 0, b = 0, and r = 1 (a),  r = 

0.00001 (b). In both cases the x interval is [0, 2] and y interval is [-10, 10].  

 What form of graph do we expect when there is a function limit? 

 Does the limit 
3)0,0(),(

lim
xy

x

yx 
 exist? 

Decreasing the value of radius r does not lead to an expected transformation of the graph to a 

horizontal line. Zooming out along y-axis (it is z in the original 3D scene) just emphasizes the 

spread of values of the function. The y interval in Fig.21 c) is [-320, 320] while r = 0.00001. 

The limit does not exist. 

Consider
3)5.0,1(),(

lim
xy

x

yx 
. Fig.21 displays also the involute in case of a = 1, b = 0.5, and         r = 1.5 

(d), r = 0.1 (e), and r = 0.00001 (f). The scale of y axis in all images is [-5, 5].  

It is clearly seen, that while decreasing radius r the “crazy” curve “calms up” and becomes extremely 

close to y = -2, to the value of limit we are looking for. (Why?) 
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 Does the horizontality of graph guarantee the convergence of f1(x, y) at (a,b)? 

Use the current model to explore
2 2( , ) (0,0)

1
lim sin

x y x y 
. Explain.  

  a  b   c  

 d   e   f  

Figure 21 

The 3D models we were using before had difficulty in visualization of the value of function as z 

coordinate (3D perpendicular was the only option to get it). 2D models like the current one are free 

from this drawback. 
To watch the value of f(P) for points P on the circle add expression 

“f1(radius*cos(c)+a,radius*sin(c)+b)” to the “expression/condition” window. Define the c parameter 

in the boundaries of [0, 2], select the c parameter, and change its value by the scroll bar. It will give 

an additional, numeric impression in parallel to the graph.   

As previously noted, the main disadvantage of naive definition D8 is that practically impossible to 

follow it: there are infinitely many paths to approach the point P0, and, accordingly, an infinite 

number of ways of behavior of the corresponding values of the function. It is impossible to pass them 

all. 

2.2 Definition by Cauchy 

Let us see how the precise definitions can improve our studies. 

By analogy with the concept of neighborhood of point x0 as an interval (x0 - , x0 + ) centered at x0 

on the coordinate axis  

D9   We call neighborhood of point P0(x0, y0) in the plane Oxy the interior of a disk centered at P. A 

neighborhood with radius  is called -neighborhood. 

Highlight the fact that distance from any point P(x, y) belonging to the  -neighborhood of the point 

P0(x0, y0) is less than 
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D10  Number L is called the limit of function z = f (x, y) = f (P) as PP0 if and only if, for every > 

0 there exists > 0 such that | f(P) – L| < whenever P belongs to  -neighborhood of the point 

P0 (except, maybe, the point P0(x0, y0) itself). 

We write LPf
PP




)(lim
0

 or Lyxf

yy
xx






),(lim

0

0

 

From the definition follows that if L is the limit of z = f (P) than the difference f (P0) - L is arbitrarily 

small when the point P arbitrarily unlimitedly approaches to P0. 

The model we are going to create should present and allow dynamically acting with two main 

elements of the definition: 

1. The inequality | f(P) – L| <  

2. The  -neighborhood of point P0. 

Although, this configuration seems not trivial, the model can be rather simple. 

Model M10 (Fig.22) consists of:  

- Graph of function f1(x) (say, z = x / y), 

- Additional variables: l, epsilon, x0, y0, delta,  

- Two semitransparent planes y = L – epsilon, y = L + epsilon, which bound all the space | 

f(P) – L| < ,  

- Cylinder, with  axis parallel to the axis z, basis centered at point (x0, y0, zMin) and height 

equal to zMax – zMin. This cylinder bounds all the 3D points, whose projection onto the 

plane xOy lie in the -neighborhood of point P0.  

Fig.22 (left) presents checking of
1

( , ) (0,0)
lim ( , )

x y
f x y


. Here x0 = 0, y0 = 0, L = 0, = 2, = 2.  

                   
Figure 22 

 How one can use this model to check whether L is the limit of f1(x, y) at P0(x0, y0)?  

For every >0 should be possible to find such proper value of >0 that all the piece of surface 

inside cylinder will lay between the two planes.  

 How to verify this? After all 3D scene can be very complicated and hardly observable. 

You just have to look into the cylinder from the top and bottom, if the entire surface inside the 

cylinder resides in the space between the translucent planes, then, when viewed from above, all 

it will be shaded by reddish tint, and, when viewed from below, - by a bluish, correspondingly 

to the colors of planes! 
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 Maybe it will be easier to set the planes opaque and make sure that when viewed from above and 

below our surface is not visible inside the cylinder, only visible the disks of planes? 

The model will not be sufficiently diagnostic: it will miss the difference between the case of “all 

inside” the -layer and the case of counterexample, where “all outside” the viewing volume, 

but inside the cylinder.    

Following the recommendations we immediately discover, that the guess that 0),(lim 1
)0,0(),(




yxf
yx

 is 

wrong: the green pieces of surface inside cylinder are seen already at the top and bottom facets of the 

viewing volume does not matter how much we reduce the value of radius . (Let us recall negation 

of the limit: …  

Fig.22 (right) presents the model in checking of 1),(lim 1
)5,5(),(




yxf
yx

. Here x0 = 5,        y0 = -5,   L = 

-1, = 2, and = 2. -…a promising scene. 

Let us look at the structure from top (Fig.23 left) and bottom (Fig.23 right). –Looks good. Even with 

such large values of  and  we see the full tint of surface inside the cylinder. 

 Can we conclude that -1 is really the limit?  

The definition D10 claims: … 

One can try to reduce the value of , and to choose the proper value of  in order to confirm 

the belonging of all points of the surface inside cylinder to the -layer. Unfortunately, this 

testing sequence will never end if L is really the limit of the function at P0. So, we are unable 

to come to a final conclusion. 

Our model allows making a final conclusion only in the negative case of counterexample, 

when L in not a limit, as it was done in the previous experience.  

                        
Figure 23 

But, what if to try to combine the -layer with curve - image of the circle of radius  from the previous 

model? 

Fig.24 presents different options of such show: with/without graph of f1(x, y) and multi/single-

colored. The first two here show the case of x0 = 0, y0 = 0, L = 0 and rest – the case of x0 = 5, y0 = -5, 

L = -1. 
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Figure 24 

Comparison of this model with the original one, their advantages and disadvantages, can be useful in 

formation of the concept of limit.  

This discussion brings an idea of one more model, which displays only the relevant piece of surface 

instead of curve.   

The following new model M11 implements this idea. It includes: 

- Graph of function f1(x, y), say, z = x y, 

- Additional variables: L, , x0, y0,  

- Two semitransparent planes y= L±, which bound all the space |f(P)–L|<, 

- The disk in xOy plane with center at P0(x0, y0) and radius , 

- The green image of this disk–the piece of surface defined as“f1(x, y), if (x-x0)
2+(y-y0)

2<". 

Fig.25 shows the case of x0 = 1.5, y0 = 1,  L = 1.5, = 1. = 1.9 (left) = 0.4 (right). In accordance 

to the 3D axes’ orientation the piece of surface–the image of the disk has four-color tints: 

1. The original color, 

2. The color of points inside the -layer: reddish green, 

3. The color of points under the layer seen through both planes, 

4. The color of points under the layer seen through lower plane: bluish green. 

All the points in Fig.25 (right) have the reddish green tint. Hence, the whole piece belongs to the -

layer. 

 

                     

Figure 25 
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2.3 Definition by Heine 

D11   We call L the limit of function z = f (x, y) = f (P) as point P(x, y)P0(x0, y0) if and only if for 

any sequence {Pn(xn, yn)} converging to P0(x0, y0)  with terms     Pn(xn,yn) P0(x0, y0) for all n 

N, the sequence {f(xn,yn)} converges to L as n   

So, the software has to provide an ability to generate different sequences {Pn(xn, yn)} converging to 

P0(x0, y0) and to check if the correspondent sequence {f(xn,yn)} converges to L as n  

VisuMatica allows generating of {(xn, yn, f(xn,yn))} sequences. They will simulate the different passes 

similarly to the univariate case.  

Model M12 includes two visible objects: 

- Graph of function z = f1(x, y), say, z = sin x + cos y. 

- Graph of a sequence s(n) = RandomlyTo (f1(x, y),( x0, y0), rate).  

Call to function “RandomlyTo” generates a random sequence of 3D points      {(xn, yn, 

f1(xn,yn))}, wherein the sequence {(xn, yn)} converges to (a, b) as n   All these points lie 

on the surface of graph. The last argument rate sets the “laziness” of convergence. The lower 

the rate, the faster {(xn, yn)} converges to (x0, y0). 

The first two images in Fig.26 display the model with x0 = -0.8, y0 = 0, and rate = 0.25. These two 

images correspond to two different random sequences.  

The generation of random sequences with specified values of parameters x0, y0, and rate 

carried out by simple pressing the button F5. 

The 3rd image shows the model with rate = 0.05, and the 4th, - when rate = 0.0001.  

Color distribution codes the order of points in the same way as before (Fig.10 e). 

Pay students attention to the location of red point(s), while generating different sequences 

with decreasing value of the “rate”, and the meaning of stability of this location like in Fig.27. 

    

    

Figure 26 

Ease of management allows to quickly and thoroughly probe the behavior of possible sequences, and 

with a high degree of reliability, to conclude on the convergence of function to the limit.  
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Consider the already studied example of 
( , ) (0,0)

lim
x y

x

y
. Redefine f1, set x0=0, y0=0 (Fig.27).  

        

Figure 27. rate = 0.25 (left), and rate = 0.000001 (right) 

“Speeding up” by decreasing the value of rate does not change the situation – red points remain 

widely distributed over the surface.  

With the same suspicions as in the univariate case, we refer to the Divergence Criterion (DC, section 

1.3). It fits the bivariate case, and includes the following statement: 

DC3d  ),(lim
),(),( 00

yxf
yxyx 

 does not exist, if there are two sequences )},({ nn yxf   and )},({ nn yxf  , 

converging to different limits. 

 

Fortunately, function RandomlyTo has an option to generate random sequences of points f(xn, yn) 

lying in a vertical plane y = k(x–x0)+y0, which passes through the point (x0,y0). The additional 

argument of this function defines the angle - arctan k  - in degrees: 

RandomlyTo (functional Expression, point, angle, rate) 

Students add parameter angle, redefine s(n) as RandomlyTo(f1(x,y),(x0,y0),angle, rate) and perform 

the following activities: 

1. Set value of angle to some number in interval [0, 360].  

2. Set rate to 0.25 and repeatedly press F5.  

3. Change the rate to a lower value and repeat pressing F5. 

4. Go to step 1.  

Fig.28 displays the model with rate = 0.25 and angle: 0(a), 7(b), 30(c), and 90(d).  
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a)        b)  

c)        c)  

Figure 28 

Help students:  

- To notice that repeated generating of the random sequences does not matter – points’ projection 

onto xOy plane remain on the same line. (How to make sure of this?). The red region is left 

essentially unchanged.  

- To make proper assumptions about the convergence of these sequences. 

 Prove that yx
yx

/lim
)0,0(),( 

does not exist using the experience of exploration. 

 Why Fig.28 a) does not include any point of a random sequence? 

Discussion about the unique arrangement of random sequences on horizontal lines and its application in 

solution we are looking for can be interesting and informative. 

- Rewriting initial equality z = x / y in form x = yz explains the surface geometric nature: 

It is a saddle-shaped hyperbolic paraboloid with a gap: it does not include points whose y = 0 (denominator 

in the initial expression).  

From x = yz we immediately conclude that all these points completely fill the z-axis (the dark vertical line 

in Fig.28 from proper point of view looks as a crack). 

- Hyperbolic paraboloid is a classical example of a ruled surface, through every point of this surface passes 

a straight line that lies on it.  
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- Setting z to a definite value, say a, we get equation of the contour line on level a and it is a = x/y or x = ay 

or y =1/a*x – clearly a straight rulling line –  the directrix of our surface.  

Define this line by two expressions: “Point(xMin,xMin/a,a)” and “Point(xMax,xMax/a,a)”. Animate 

parameter a and make sure that this line is the directrix of the surface and at a certain point of time 

comprises all the points of a random sequence, predetermined by the direction angle. For each horizontal 

directrix there is a direction angle atan(1/a)  that also defines the proper sequence, and vice versa - for 

each sequence there exists a proper directrix, which includes all its points, except a = 0.    

So, we are ready to make a final conclusion: since all the points of any random sequence, defined by the 

angle of direction, belong to one and the same horizontal line (fixed z), then the limit point should also lie 

on this line and have the same   z-value. In other words, we found an infinite number of sequences, whose 

projections onto xOy plane {(xn, yn)} converge to (x0, y0), but the correspondent sequences of function 

values {f1(xn, yn)}, being constant and thus converging, have different limits: these constant values of a. 

Thus, the yx
yx

/lim
)0,0(),( 

does not exist. 

Redefine f1(x, y) back to z = sin x + cos y and repeat the exploration.  

 What is different in behaviour of the sequences? What this difference means?  

 Does it guarantee the existance of 
( , ) (0,0)

lim sin cos
x y

x y


 ?ꜝ 

In some cases, the Divergence Criterion for functional limits works best when considering 3D 

sequences { , , ( , )}n n n nx y f x y , whose projections { , }n nx y  on the plane xOy are arranged along certain 

curves, - and not straight lines at different angles. VisuMatica supports construction of such sequences 

by the following syntax: 

 

RandomlyTo(f(x,y),x0,g(x),rate), RandomlyTo(f(x,y),t0,ParametricCurveName,rate) 

 

Conclusions 

In this paper, we show the role and place of counterexamples and effectiveness of software in studies 

of the concept of limit of a function as an example of a concept with quantifiers in definition.  

Those presented ideas were realized in the author’s noncommercial software VisuMatica, which 

facilitates the creation of even intricate models by the students themselves10. 

Supplementary Electronic Materials 

Videos with animations: https://sites.google.com/view/counterexamples-in-math-edu-2/ 

 

                                                           
10 As a rule, students just load ready-made models using popular software (it's difficult to create models by 

themselves; it saves time). With that is lost the formation of an important human ability to create the necessary 

means to achieve the desired goal. 
 

https://sites.google.com/view/counterexamples-in-math-edu-2/
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